

CSCI 151

Exam 2 Solutions

May 6, 2022
This is a closed-book, closed-notes, closed-Internet exam.

The exam has 6 numbered questions; each is worth 16 points. You get 4 points for free, for a

total of 100 points.

The last page of the exam is blank; you can use this for additional space for any of the exam

questions.

After you have finished the exam please indicate whether you followed the Honor Code on

the exam.

I □ did □ did not

adhere to the Honor Code while taking this exam.

 Signature

1. Here is a picture of a binary tree. Give pre-order, in-order, and post-order traversals of

this tree.

Pre-order:

 10 12 15 8 5 3 7

In-order:

 12 15 10 5 3 8 7

Post-order

 15 12 3 5 7 8 10

2. Here is an AVL tree. Draw the AVL tree that results from inserting 130 into this tree.

3. Write method

 int indexLargest(LinkedList<Integer> L)

that returns the index of the largest element of L. If L is empty return -1. If L has N

elements your method should run in time O(N). Note that this asks for the index of

the largest value, not for the largest value itself.

I intended this as a question about iterators but hardly anyone took it that way. I

ended up giving credit to any solution that returned the index of the largest element

of L, whether you thought of this as a method of the LinkedList class or a method from

some other class that uses LinkedLists.

int indexLargest(LinkedList<Integer> L) {

 if (L.size() == 0)

 return -1;

 else {

 Iterator<Integer> it = L.iterator();

 int bigIndex;

 Integer value, bigValue;

 bigIndex = 0;

 bigValue = it.next();

 while (it.hasNext()) {

 value = it.next();

 if (value > bigValue) {

 bigValue = value;

 bigIndex = it.nextIndex() -1;;

 }

 }

 return bigIndex:

 }

}

4. Here is a list of key-value pairs and their hash codes:

(key-value) (A 19) (B 25) (C 13) (D 14) (E 25) (F 32) (G 19) (H 22) (I 17)

hashcode 4 2 0 7 2 7 1 0 8

Add these values from left to right (first (A 19), then (B 25) …) to the following hash

table. The small numbers are the table indices, so you don’t have to count across to see

where an index such as 6 occurs.

 0 1 2 3 4 5 6 7 8

(C 13) (G 19) (B 25) (E 25) (A 19) (H 22) (I 17) (D 14) (F 32)

5. I have a very large file containing information about actors and movies they have acted in. The

first few lines are

Humphrey Bogart###Casablanca

 Judy Garland###The Wizard of Oz

 Daisy Ridley###Star Wars: The Force Awakens

 Humphrey Bogart###The Maltese Falcon

 Humphrey Bogart###Casablanca

Let’s assume you know how to get the actor/movie information from each line. The lines come

in an arbitrary order; the movies for any particular actor are not listed together. There is also a

problem with the data: because of the way the datafile was generated some lines appear more

than once, and not together. The line: “Humphrey Bogart###Casablanca” might appear 5 times

at difference places in the data file. You have been asked to write a program that reads this

datafile and prints the names in order of the 50 actors who have acted in the most movies.

Explain in English how you will do this. Which of the standard Java data structures that we have

discussed this semester (ArrayList, LinkedList, Stack, Queue, TreeMap, TreeSet, HashMap,

HashSet, PriorityQueue) will you use and how will you use it? You don’t need to write any code

for this question; just tell me in English how to put data structures together to solve this

problem.

Read the data file line by line into a string, and break the string into actor and movie fields.

Build a HashMap<String, ArrayList<String>> where the keys are the actors’ names and the value

attached to an actor’s name is a list of his or her movies. To solve the multiple lines problem

check to see if a new movie is already in the actor’s list of movies before adding it. A more

efficient solution would use a HashSet<String> or a TreeSet<String> in place of the

ArrayList<String>

After reading the entire file build a Comparator<String> that compares two actors’ names based

on the length of their movie lists: compare(x, y) returns -1 if actor x has a longer movie list than

actor y.

Finally,. build a priority queue of actors’ names based on this comparator and poll it 50 times.

6. Remember the tree structures from Lab 5 (where we wrote recursive methods for

trees). BinaryTree<T> is an abstract class with two concrete subclasses: EmptyTree<T>

and ConsTree<T>. EmptyTrees have no data or children; ConsTrees have a data field

of type T, and children leftChild and rightChild, both of which are BinaryTrees.

Give the EmptyTree<T> and ConsTree<T> code for the method

 int heightCount(int h)

which returns the number of nodes in the tree that are of height h, for any h>= 0. You

can use all of the methods of Lab 5, including int height(), without rewriting them.

For example, the following tree has one

node (A) of height 3, two nodes (B and C) of height 2, two nodes (E and F) of height 1

and five nodes (D, G, H, I, and J) of height 0. Don’t forget to write both the ConsTree

method and the EmptyTree method.

 Emptytree: int heightCount(int h) {

 return 0;

 }

 ConsTree: int heightCount(h) {

 int myHeight = this.height();

 if (myHeight < h) // This condition actually isn’t needed; the recursion

 return 0; // will handle it.

 else if (myHeight == h)

 return 1;

 else

 return leftChild.heightCount(h) + rightChild.heightCount(h);

 }

You can use this page for additional space for any question.

